Thursday, July 16, 2009

Process

  • Process State

In a multitasking computer system, processes may occupy a variety of states. These distinct states may not actually be recognized as such by the operating system kernel, however they are a useful abstraction for the understanding of processes.

  • Process Control Block

-Information associated with each process.

>Process ID

>Process state

>Program countern CPU registers

>CPU scheduling information

>Memory-management information

>Accounting information

>I/O status information

  • Threads

In computer science, a thread of execution results from a fork of a computer program into two or more concurrently running tasks. The implementation of threads and processes differs from one operating system to another, but in most cases, a thread is contained inside a process. Multiple threads can exist within the same process and share resources such as memory, while different processes do not share these resources.


On a single processor, multithreading generally occurs by time-division multiplexing (as in multitasking): the processor switches between different threads. This context switching generally happens frequently enough that the user perceives the threads or tasks as running at the same time. On a multiprocessor or multi-core system, the threads or tasks will generally run at the same time, with each processor or core running a particular thread or task. Support for threads in programming languages varies: a number of languages simply do not support having more than one execution context inside the same program executing at the same time.

Examples of such languages include Python, and OCaml, because the parallel support of their runtime support is limited by the use of a central lock, called "Global Interpreter Lock" in Python, "master lock" in Ocaml. Other languages may be limited because they use threads that are user threads, which are not visible to the kernel, and thus cannot be scheduled to run concurrently. On the other hand, kernel threads, which are visible to the kernel, can run concurrently.

No comments: